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Course Outline

Review of classical Soil mechanics
Elasticity in soil mechanics
Plasticity
Elasto-plastic models (Modified Cam-clay)
Critical State
Shear Strength
Hyperbolic model
3D consolidation  -Biot Theory
-Mandel cryer’s effect
-Constant Gradient

Generalized slope stability
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I
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Mechanics(D.M. Wood)
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« Geotechnical

Modeling(D.M. Wood)

« Presentation 25%
+ Final Exam 50%



- Chapter #1

Soil Modeling



Soil Modeling

T a) : Real Soil Behavior
) : Rigid-perfectly Plastic

(stability calculation, bearing
capacity)

o :Linear Elastic

(settlement calculation)




Soil Modeling

These two simple models lie behind much of “classical soil
mechanics”.

Therefore, there is usually a need to determine the
“stiffness” and strength of the soil.

These are the “elementary models”.

There are other models although having certain assumptions
which are more realistic.



Soil Modeling

A good model should be able to relate various
aspects of soil behavior such as :

-Strength

-Compression

-Dilatancy

-Critical States

In order to be capable of predicting real sail

response.



Soil Modeling

1 Some notations based on triaxial cell data :

a F
Oq = Oy (1 o E) + A Deviator
stress

a: Areaof loading ram F
) q-o.-o =y
% = Negligible
F
o, =0, + H



Soil Modeling

- Mean stress 0, + 20,
P="3
71 Deviator stress q=o,— 0,
ov

= Volumetric strain 6€p = 5



Soil Modeling

The work input for a cubical element under general
state of stress per unit volume of the element is :

dw = 0,,06¢&,, + 0,,,6¢,, + 0,,6¢,, +

Iyz‘ﬁ"yz + szal"zx + rxy5ny

If soil element’s stress are considered in the
principal directions :

dw = 0,0g, + 0,8¢, + 036¢;



Soil Modeling

01 For triaxial specimen

0,= 0, =0y b, = e, = b¢gg

o, = 0o, be, = 6&4

dw = g, 8¢, + 20, 8¢,

8¢, = b, + 28¢,



Soil Modeling

Increment of volumetric work :

— ;  ogtloy
0w, =p 0¢, p' ="
Increment of distortional work :
2
0wy = qoe, Oe, =~ (b, — 0¢,)
Therefore : dw = p'de, + qbg,

—  ow,+ owy



Soil Modeling

1 In General : (first & second invariants of the tensor)

2 T=t O, ta.
3

p

q=[(a;,-u:-,)’+(&;_,—- ) + (0L —0))?

172
> ‘ , +3(t), + 12+ ri,):l

0E, = dt,, + Ot,, + J¢.,

63! = %{2[(‘55?! - 68-“] 1 + (5£:= - &E;::)z + ("55:: - asﬂ):]
+3(07,, + vz, + 0y,)} 2




Soil Modeling

1 For deformations at constant volume :

b, = 0= de, + 20¢,

2
‘ 8¢, = E(&E‘u —§e,) = -28¢, = b¢,

‘ at constant volume
JEQ - EEE change



Soil Modeling

1 From triaxial test data :

5 ol @+ﬂ
a™ T — _v 1
|os = o
5Eq:§(5fﬂ—5fr)

16v ol

ol ov Ol _
%(‘T*%(TT)) ) gy=g



Soil Modeling

0,1+ 20,

’ ‘ p:arJr%q

q—=0,—0;

if o, is held const. 60,.=0
3
/
>

Conventional compression
test




Soil Modeling

0 Undrained Test :

-Constant Mass Test

‘ Constant Volume Test ; if all the soil

components are

incompressible



- Chapter #2

Elasticity



Elasticity

E : Young’s Modulus V: Poisson’s Ratio
P/j_‘1 —Sd/d
"= 8l '

A pair of elastic parameters is sufficient to describe
the elastic response of isotropic materials.

other pairs of elastic parameters often used :
G : Shear Modulus
K : Bulk Modulus



Elasticity

-
7 In this way elastic deformation is devided into two

components :

|

-Volumetric part

——— e i

-Distortional part @

——

{c)



Hooke’s law

axial symmetry:
oc,\ 1(1 =—2v)oo),
0€, CEl-v 1-v oo,
Jeo E 1-v 2vog,
oo’ ) [Q+v)i-2v)l v 1 )\

compliance/stiffness matrices not symmetric because stress
and strain variables not work conjugate

Elic University of
BRISTOL



Elasticity

In general (for isotropic materials) :

%0u] K K K 0 0 0[] [4€ 26 26

oyl 1R K K 00 0f%]| | 2 a6 2 oo

S0, K K K 0 0 0]% X _g ?ZG_E 5S¢y

day,[ 10 0 0 0 0 00y —?—??Uoog?—z
0 0 0 G 0 oll.*

652}: 000 000 a‘l/zx 0 0 0 0 G 0 OYxy-

00,y 000 00 0'-5Y;gr_ .0 0 0 0 0 G-




Elasticity

o
71 For transversly isotropic material :
axis of
9 . ) symmetry
1/E —= ——= 0 00
/ E E
Y 1 9’
~ - 2 000
€X E E E’ Ox
&y 9 9 1 Oy
2.l 7 r g °0Y | / g
Yxy 1 Txy
Yyz 0 0 0 G 0 0 Hlzy, X
Yzx- 1 -Tzx
0 0 0 0O — 0
G."
0 0 0 0 :
G.F




Elasticity
N

1 Five Constants :
-E
_F’



Assignment # 1

Write the transversly isotropic equation in 2-D
form for a triaxial specimen and find the matrix

[C] :
.ﬁpf o o=
ﬁq} = LC] {SEE}

Is volumetric and distortional effects independent?



Elasticity
N

11 For plane strain :

4G 2G
{ﬂm} Rt5 R=35 Olex
Oyy e = 2G 4G Eyy
Oxy) RT3 Rt Yy
0 0 G




Elasticity

dep, = 0g, + 208,

2
dgq = 3 (6e, — O¢,)

K' & G’ : Effective Elastic parameters



Elasticity

=
AR
oq 0 3G6'1\8g,) (A

Or

Since off-diagonal terms are zero ; there is no coupling
between volumetric and distortional effects for isotropic
elastic behavior.

Ep"‘ no distortional effect
Sq ‘ no change in volume



Elasticity
—

1 For Drained condition :

O Ogp 36 Ep') , in triaxial test: O = 33]?’

5o~ 5 Coq

q 1 q

SEP B G’
Seq K £

(a) ()




Elasticity

For Undrained condition :

No volume change  06g, =0

1 1 _
EEFZFEI}I :> FSF =0

There is no reason why the effective bulk modulus
should be infinite , since the elastic properties of soil
skeleton may not change :

=) 6p=-0 mm) Op=o0U



Elasticity

11 Therefore the effective stress path is vertical in p’-q
plane:

Evidently , any total stress path may be imposed and
still having the ESP vertical.

If the TSP is vertical then §p = 0 and since 0u = tffp
There is no PW.P generated during the test.



Elasticity

The behavior of the soil element is controlled by the

change in effective stress , but in terms of total

stress :

s [

0 5£p
SGJ 5Eq

q

Ty

(a)

(b)

q

E, =3¢

(c)



Elasticity
—

For undrained condition
op 0
(?Ep =0 ‘ K,
There can be no constrained on the total stress path

‘ K,=




Elasticity
—

11 Shear modulus is independent of the drinage
condition .Since (¢ = ('

E Ok . 3E
21+9") 21+ 9y, ‘ 21 +9)




Assignment # 2
B
E2.1
E2.2
E2.5



- Chapter #3

Plasticity & Yielding



Plasticity & Yielding

In elasticity no energy is dissipated during
application and removal of a load.

For many material and especially for soils , there is
not a one-to-one relationship between stress and
strain.

| 7




Plasticity & Yielding

Yield :

As the material departs from being elastic on
reloading at point “A” (the past max load) , it is said to
be “yielding”.

The past max. load now becomes a “yield point”.

-Therefore, yielding is transition

from a stiff response to a less
stiff response.




Plasticity & Yielding
—

0 Yielding of Metal tube in combined tension &
torsion

Q_T;Q

“COppel‘" {




Plasticity & Yielding

e
o) Behavior in simple tension

)  Behavior in simple torsion

-Similar behavior in pure

tension & torsion.



Plasticity & Yielding

C) Behavior in combined tension & torsion :

The stress path followed :

Q
4
1 vield
T point
e = —>
H'IP“ Pﬂ P

Perform the test with eight different values of “m”
give eight different yield points.



Plasticity & Yielding

A yield curve could be drawn defining the
combination of tension and torsion for which
yielding will occur as shown on the next figure.

0.6




Plasticity & Yielding

NOTE :

If there was no interaction between the tension
and torsion , the results would be on the rectangle.

This was a yield curve for the specimen with the
particular history of preloading.

This shape of yield curve may be predicted using
a proper “yield criterion”.



Plasticity & Yielding

Yield Criteria

1- Tresca yield Criterion

Yielding occurs when the max shear stress reaches a
critical value.

In terms of principal stresses :

max(o;—o;)=2¢c (i,j=1,23)

2c : yield stress in uniaxial tension ( 9y )



Plasticity & Yielding
—

o1 The yield criteria may be shown on a spaced
formed by three axes ¢, , o, , o5 known as

“Principal Stress Space”.




Plasticity & Yielding
—

1 Plane stress : (0. =0 )

ﬂ-i_ﬂ-zzﬂ-

03 —04 = —0, O3 — 0, =0

ﬂ-g_ﬂ-z = —0

ﬂ-l_ﬂ-z = —a



Plasticity & Yielding
—

0 Triaxial : ( 02=03 )

g4
_ 2
0A = Eﬂ'y
A //

V20, =20,
i




Plasticity & Yielding
—

JIn 7-0 plane

g g
o, ag—fi\](f)2+r§z
Mohr circle
6,—03 [0,—0, 5
2= [T e,
G, — 03 =2C

0,—0
Cg Ty e -0,)" + 413, = 4¢°



Plasticity & Yielding
—

-1 For the previous example : ( a,=0 )

2 7 1.2 which is an ellipse
0y t41, =4 P

in pure torsion

0, — O3

Tresca




Plasticity & Yielding

]
2- Von Mises Yield Criteria

Yielding occurs when the second invariant of the stress
tensor reaches a critical value.

(02=03)" +(03—0,)* + (0, — 0,)* = 8¢c?

D qune STreSS (ﬂ-z — 'D) (von Mises

Gyield

Tresca
g {(Maximal
/ shear)
—Oyield G2

y
/ Cyield

-

/

—Oyield




Plasticity & Yielding
—

01 Principal stress-space




Plasticity & Yielding
—

11 For previous Example :
ol + 3t} = 4c?
An ellipse again in pure torsion : (92=0)

_ _oy

IHI___\/—

el
ad



Plasticity & Yielding

This figure indicates that Von Mises criterion
describes the yield surface for anealed copper
better than Tresca criterion.




Plasticity & Yielding

0 Triaxial ( 92 = 03) o,

/

O P

<

0 In t-0 plane:

) 20,0y =20}
-

ﬂ'i_ﬂ'gzﬂ'},

0y — 03




Plasticity & Yielding

]
3- Mohr-Coulomb Yield Criteria

-In general :

{ 0 = O N+ 20N
N =tan(45 + g)




Plasticity & Yielding
—

: Plane perpendicular to space diagonal

The failure or yield criteria on m-plane :

)

Mohr
Coulomb

Drucker-
Prager

¥



Plasticity & Yielding

N
For the previous example using “Mohr-Coulomb”

criterion :

0y —03 01+03

sin CCoS
9 9 @+ @

o o
0 =2+ |G,

g a
0= 2 |G 428,

0, +03 0,
2 2




Plasticity & Yielding
—

7] o
J (f)z +15, = Ez sing + c cos¢

-

o o
(f’)2 + 1,2 = ({)Esinzq) + ¢ cos®@ + c cos@ g, sing

o
(=)?%[1 - sin®@] + 15, = ¢* cos’@ + c cos@ sing o,

2
o
(?3)2 cos’p — c cos sing 6, + 15, = c*cos*¢
o
(?3 cos@ — c sing)? — csin@ + 15, = c*cos’g

o
‘ (?3 cosp — csing)? + 15, = c?




Plasticity & Yielding
—

For pure torsion ( o¢,=0)

if =0 - 0,=+2c, 19, =C=-0y

otherwise if @+0 - 714, <cC



Plasticity & Yielding

The result of the previous example on 1 -plane :

T a

%z _ 0.4 2 -0.7

ﬂn J[]
o, O 0.70,

_ £ o, 2
03 = 2 J_r\l(?)2+rﬁz— > J_r\/(D.SSJD)2+(D.4aﬂ)2

— (0.35+ 0.53)0, — { g, —0.88 g,

ﬂ-g — _'D. 18 Jﬂ

2c =0y



Plasticity & Yielding

4- Drucker Prager Model

A generalization of Mohr-Coulomb to account for all
principal stresses :

fzm—ﬂ]1_ﬁ

Ji: first invariant of stress tensor
Jop 2"d invariant of deviatoric stress tensor

a&K: positive material parameters



Plasticity & Yielding
—

-1 Drucker prager criteria

g -i

J2p

Drucker-Prager

A0 .
4

K - Mohr-Coulomb
J1
| /1
Si; = Deviator stress tensor = 0;; — E‘Sij

$i;=10



Plasticity & Yielding
—

1 For ¢ &g from triaxial test condition :
_2sing
- /ﬁ(B—sinqﬂ)

K= 6ccos q:)/
V3(3 — sing)

d S;:
5fzzt‘{f—ﬂ[ J — (5}4
Oij  12,J2p

. 0t =-3%a  (always negative)

Incremental plastic \/

volumetric strain




Plasticity & Yielding

NORMALITY :

In principal stress space the correct strain parameters to
associate with the principal stresses are the principal strain
increments.

For isotropic material the principal axes of stress and strain
increments are coincident after yield.

The plastic strain increment vectors are plotted in next slide :



Plasticity & Yielding




Plasticity & Yielding

The direction of each vector indicates the relative amounts of
plastic twist and extension that occur when yield is reached.

These vectors were approximately normal to the Von Mises
criterion.

From these figures :

-Direction of plastic strain increment vectors Do not depend on
the route followed to the specific point on the yield curve but
“depend on the particular combination of the stresses at the
particular point at which yielding has occurred”.

The mechanism of plastic deformation depends on stresses
and not stress increments.



Plasticity & Yielding

-
Yielding of Clays

Yielding occurs following different stress path :

1 -lsotropic compression _
500 =

200

p', kPa

V : specific volume=1+e

100

© vield point

2.6

(a)



Plasticity & Yielding
—

2-Undrained triaxial compression

150 :

100

q, kPa




Plasticity & Yielding
—

3-Compression and unloading at constant P’

100 |




Plasticity & Yielding
—

Results :

-Preconsolidation pressure is a yield point.

‘ Elastic behavior

-The result of yielding on three different stress paths

for a soil on p-q diagram :
q

-For stresses < o,




Plasticity & Yielding

The yielding surface may be regarded as a
generalized preconsolidation pressure for different
stress paths.

This yield curve may be sketched in principal stress
space :




Plasticity & Yielding

N
How to determine the yield point from experimental
data ¢
200 _ S -
R : Ll
150 - | : ﬁ. '
& T S0fF
I ' | |
100 [ | -10 =5 0 5 10 15
_ ' t €,,%
sl @~ [
0 s 70 s _ ~100L

EP,%-

4 & 7 : different stress paths



Plasticity & Yielding
—

For triaxial apparatus : 200

W = J.(p' ds, + qde,)

a _ 10 20 30
W, kI/m?

W= Ia, de,



Plasticity & Yielding
—

Use as many plots as possible , then “average”

Also “S” versus “W” where




Plasticity & Yielding

For example :

300
(=8
S 200,
--b-
100
-0 5 10
E.)ﬁ‘
(a)

q, kPa

200+
—-
100
1
05 s )
ep,%
(§-)]

10 20
W, kJ/m?

(e)




Plasticity & Yielding
—

Yield curves for soil of different preconsolidation
pressure :

u'l'l!
200 =0 191 kPa
+ 241
x 310
A 380

q. kPa

100 -

0 100 200 300



Plasticity & Yielding
—

If Normalized :

0.6

e




Plasticity & Yielding

Yielding of SAND:s :

The determination of the entire shape of a current
yield surface for a given soil sample is not feasible :

Having identical samples (sample of undisturbed
sand) is nearly impossible.

To investigate current yield point , it is needed to
go beyond the current yield point.



Plasticity & Yielding
—

Y: current yield ) B: subsequent yield point

@) ? (b)



Plasticity & Yielding
—

Path followed in triaxial test :

1000

q, kPa

200




Plasticity & Yielding

1200,
1000 | /
800
o / —
& 600 T
= -0 \
400 \
\
!
200 \
1
u. 1 I L 1 L 1 r!
0 200 400 600 800 1000 1200 1400
p', kPa

(d)



Plasticity & Yielding

I I ———
HW

E3.1c - E3.5



- Chapter # 4

Elastic-Plastic Model
For Soils



Elastic-Plastic Model

]
Intfroduction :

Yield surface :

-stress changes inside yield surface (Elastic
response).

-stress changes engaging the yield surface (Elastic
and plastic deformation).



Elastic-Plastic Model

-Magnitude of plastic deformation?
-Relative magnitude of components?

-Link between these magnitudes and yield surface?

P &
a g

-Changing size of the yield surface
-Related to changes in volume ‘ “Volumetric

Hardening”



Elastic-Plastic Model
B

Elastic behavior :

Isotropic , Elastic :

1K 0 ][
L 0 13G'JLdq




Elastic-Plastic Model

“Au to “B" ) Chdnge in VOIUme (51? )

This volume change does not depend on the stress
path followed from “A” to “B”. 9§

Stress path independent because the

Response is elastic and




Elastic-Plastic Model
“OC” ) ncl on the volume change plane

During the normal compression, irrecoverable
deformations occur while pushing the yield surface
to its present position.



Elastic-Plastic Model

The compression and unloading curve becomes linear
ona v-—Inp" plot:

NCL : v=v,; —Alnp’ (1)

URL : v=v,— klnp' (2)

v .-——I url
V&V, depend on the units chosen | | %
K P

?
for p p=1 In p’




Elastic-Plastic Model

]
C.~kln10=~23x
v
; Ce
EE From conventional plot
r of oedometer test result - C
cS

Iﬂ!m 'F:,



Elastic-Plastic Model
-

I

op
p.l'

from(2) : ove = -k

—ov° op’

knowing 8¢ = og, =k - (3)

I o




Elastic-Plastic Model

Note :
Eq.(4)) Bulk modulus increases with mean pressure p’

The effect of a small reduction in “v” is

negligible compared to the increase in

P
-Within the yield surface 949 ) no volume change



Elastic-Plastic Model
-

oey = ! o
)  Se5=.5q

. 3(1-2v)K'

&= 2(1+7v") (5)

‘ G’ increases with mean pressure




Elastic-Plastic Model
-

-A constant value of shear modulus might be assumed

3K' - 2’

!

vV =
2G' + 6K’

V' varies with mean pressure



Elastic-Plastic Model
-

Plastic Volumetric Hardening

Consider a change in stress that causes the soil to
yield : a

vl 2

-
M




Elastic-Plastic Model

o
“K” to “L” ) “L” on new Yyield lucas

Assuming that the size of yield curve depends on the
preconsolidation pressure as was observed before
for Winnipeg clay.

‘ “Shape is the same , Size changing with @,



Elastic-Plastic Model

N
y2 has the same shape as y1

y 1 corresponds to a normal consolidation

to point “A” P

‘ point “K” on unloading

y2 corresponds to a normal

consolidation to point “B”

‘ point “L” on unloading




Elastic-Plastic Model

Note :

When a new vyield surface y2 is reached for the sail ,
its past history can not be investigated.

If for example the soil is unloaded from point “L” to
isotropic condition at point “M”, a researcher may
find the current yield surface but can not deduce
the stress paths followed to reach to the current

yield surface.

“Its Past Remains Hidden”



Elastic-Plastic Model
B

As shown , data from Winnipeg clay confirms these

discussions. N
o 191 kPa
+ 241
x 310
§ a 380
o 100

0 100 200 300
P kPa

2.6

1-D ncl

tJ
|8

400



Elastic-Plastic Model

The total volume change
that occurs during
changes from point K to L
is given by :

Ap = Av® + AvP




Elastic-Plastic Model

a)

b)

)

For the copper

PE;
Po

For soils »

For soils (log

(b)

scale)

P::l PL:
p’ (log scale)
(c)



Elastic-Plastic Model

Each unloading curve correspond to a new yield point
and the diff. of unloading curve gives the plastic
volume change that has occurred during yielding to
this new yielding point. v

For UR1: v=rv,,—kKInp

ForUR2: v=v,,—klnp !

k2

) AV = Av, = Ve~ Ve
Poi Po2
p' (log scale)



Elastic-Plastic Model
-

Or in terms of mean pressure of point A and B ; and
the normal compression line :

ﬁu"=-——ﬁln( )+n:ln( )
pnrl pui
— —(ﬁ.—x)ln(ff—z)
_ Por )




Elastic-Plastic Model

In the limit : ép!
P = —(A—K) P,“
Po
In terms of strain : op’
5eP = (A — ) —-=
Epu
The elastic part was found before :
5 r
5¢8 = ko
vp

In general ( A— k) (Plastic def. coef.) is about four
times as big as k (Elastic def. coef.).



Elastic-Plastic Model
B

In general :
ov = ov° + dvP
or
dv= —xa—‘::—(l—x)iﬁ-'
p p,

o€, = 0¢, + O£F

op’

5£F= Ff—’ + (}.— E}ﬁp—f
vp vp,




Elastic-Plastic Model
B

Notes :
[ ,
-Elastic volume changes occur whenever P changes.

-Plastic volume changes occur whenever size of yield

ocus changes , specified by p:]



Elastic-Plastic Model

N
When the soil is being “normally compressed” then :
q
p'=p, >
B
A

5 r

sv=—22 = ;
g
op’
GSEF = A —




Elastic-Plastic Model

Example :
PQ :

Interior of “Y1”

Elastic behavior :

5 r

ovt = — x—p:
P
ﬁa; = K 5;1
vp

No change of pj

url 1

uri 2

ncl

— —— ——— —— " —— | ————

(4

ty




Elastic-Plastic Model

]
PR : s R

Vertical in g-p’ space , “R” is on a new

I
Yield locus “v2" EEED Py,

‘ another reloading curve at -

point “B”

: - de, =0 1
ince ﬁp = || 506 — 0 ol url nel
'U p—

url 2

i
i)

— i — — o e W [y —

b = (1= 1) Fe
vp,




Elastic-Plastic Model

PS :
No volume change: &v =0

There is both elastic and plastic deformation

0¢, = 55:" -+ 55: =0

To have zero §¢, ‘ :55"::0
) 6p. >0




Elastic-Plastic Model

Note 1 :

In undrained tests with no volume change , the individual elastic and
plastic components may be different than zero.

Note 2 :

If the soil behaves elasticity (pure) then the condition of no volume
change implies é6p' =0

Note 3 :

In general effective stress path in undrained tests does not have the
same shape as the yield curve , since the yield curve has to change
to produce plastic strain to balance the elastic volume change.



Elastic-Plastic Model

0 Plastic Shear Strain :

Plastic volumetric change :

op.,
o

P = —(A—K)

For all stress paths AB, CD , etc 077 is
the same since ép, is the same and it
only depends on the size of the yield

locus.




Elastic-Plastic Model

Plastic shear strain ¢

From the test described on the copper tube it was concluded that
the directions of plastic strain increment vectors are not
governed by the stress path but depend on the particular
combination of stresses at the particular point at which the
yield surface was reached .

Before going further in details , we discuss another example :

“Frictional Block”



Elastic-Plastic Model

Frictional Block :

A block sliding on arough surface :

Constant normal load “P” apply Qx

and increase till sliding occurs:
Q,=uP

If both Qx and QY is applied the

sliding occurs when the resultant
force = HP

- o

V Qi+ Qy=uP

f=024Q2—u*Pr=0

Qx




Elastic-Plastic Model
-

Last equation defines a sliding surface in P : Qx : Qy
space.(a right circular cone on P axis )

n this equation :

f <O ‘ block remains still.

f f=0 mmm) block slides.
f >0 ‘ inadmissible.




Elastic-Plastic Model

On Qx-P plane :

P 5z%

Considering Qx and P only , there might be some
elastic shear deformation of the block before
sliding o,

V/




Elastic-Plastic Model

-On P-Qx plane the sliding motion may be indicated
by a vector of sliding component displacements :

6z° + Ox°
-Subscript “s” meaning sliding components , which
means elastic components to the total displacement
has been subtracted.(plastic remains)

-These vectors are all Il to Qx axis since 6z° =0

-If after sliding Qx is reduced to %,up at constant P
then Qy is applied, sliding will occur at ¢, =./3uP/2



Elastic-Plastic Model
B

Even though the sliding has occurred as a result of
increasing Qy, the sliding occurs in the direction of
resultant shear load so that the vector of sliding is
always “normal” to the circular plane in Qx:Qy

Oy

ulP

k




Elastic-Plastic Model
-

So irrecoverable deformation occurs in both direction
even though sliding was induced by increments in
“y” direction.(depends on state of loading and on
the path)

A second function “g” can introduced :

g=0:+Q, —k*=0



Elastic-Plastic Model
-

Right circular cylinder , the displacement vectors are
vertical to this function , and :

cg
‘"= —
oy Zagr %20,
dg
- '— __D
~*op

y is a scalar multiplier



Elastic-Plastic Model

Plastic Potential :

Suppose yielding occurs at y , the yielding has two components of
plastic deformation : Shear & Volumetric

A “plastic strain increment vector” 7
is drawn at y. A normal to this 5P
vector at y is line “AB”. ‘ _1_ SAse
For each combination of stresses at __:_:__‘ “\afp

yielding , a vector of plastic strains "'\4 ‘
.r‘"

can be drawn with an orthogonal &
/

line to this vector. , FEQEY.



Elastic-Plastic Model

as enough data become available , these short normal lines from
a family of curves to which plastic strain increment vectors are

normal.

These curves are called : “Plastic Potential”

It is shown below :




Elastic-Plastic Model

Knowing the direction of plastic strain vectors , the
relative magnitude of the two components of plastic
strains are known.

knowing the volumetric part Z> known distortional or shear

components



Elastic-Plastic Model

Normality Or Associated Flow :

If the plastic potential and the yield loci coincide , the two set of curves
are identical as in the case of metal plasticity explained before.

But in the case of frictional block the two family of curves are not
identical.

It is clearly an advantage if the shape of family of curves are the
same since the number of functions needed for the plastic response is
reduced by one.

When the yield surfaces and plastic potential surfaces are identical ,
the material is said to obey the postulate of “normality”,
alternatively , the material is said to follow a law of “associated
flow”.



Elastic-Plastic Model

_
The yield data found by Graham et al (1983) are shown :

-plastic strain increments -l

are roughly vertical to the ,, |

0.2k

yield locus. But actually it

varies 1 to about 20. ol

(roughly acceptable)

+30%

deviation from normality
(clockwise)
o
—-r
N

|

W

S
T



Elastic-Plastic Model
-

For sands , the proportion of normality is much less acceptable.
(Non associated flow)

Plastic potential lines and yield lines for sands (Ottawa sands) :




Elastic-Plastic Model
-

General Plastic Stress-Strain Relationship :

Yield locus : f(p',q,p,)=0 ()
Do : indicates the size of any member of the family of the yield
loci.
Plastic potential : g(p’,q,0)=0 (2]

¢ : parameter controlingsize of plastic potential



Elastic-Plastic Model

The plastic strain increments vertical to “g” is given by :

SeP = x — 3
ﬁp £ is a scalar multiplier
dg
deP = y — (4)
g — X dq

Suppose that the hardening , change in Py (size) , is linked
with both increments of volumetric and shear plastic strains :

0o, O,
op, = 5_1{5 0P + a_ﬁ o¢? 5)



Elastic-Plastic Model
-

The differential form of the yield loci :

éj-.ép'+ﬂéq+a—j:5p;=0 (6]
op’ dq op,

Combining 3,4,5,6 : (omitting ép;, )

O )/af(ap;ag ap;gg)
4= (ap’ap-]-&q % dp, 63§3p’+a£: dq




Elastic-Plastic Model

S
Substituting X into 3 & 4 :

N

—1 dp’ dp' ¢q op’
[3f [3;?; 9 08, 39]] af dg of og
dp, | d¢b 0p'  0ef dq | 1| Op' g Oq 6q_

This is the final form ,if : f=¢g ) associated flow
) Symmetric matrix



Elastic-Plastic Model

-~
The elasto-plastic response needs :
-Elastic response (linear , nonlinear , isotropic , anisotropic)
-Yield surface (within which the response is elastic)
-Mode of plastic deformation (plastic potential)
-Hardening rule (changing size of the yield locus )

-Failure condition (Limiting surface , beyond which stress

state can not ever pass)



Elastic-Plastic Model

S e
H.W. :

H4.2 #4.5 H4.6  HAT
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Cam Clay



Cam Clay

A particular model of soil behavior is presented to
describe the yield locus and hardening rule

It is a “volumetric” hardening model.

Modified Cam Clay originally presented by Roscoe
and Burland (1968).

P': q relevant to triaxial tests.



Cam Clay




Cam Clay

0 Yield Locus :

O

O

O

O

A simple shape for yield locus: ellipse

shapeM  p M 2

sizep, Py MZ+n?
plastic volumetric strains linked

with change in p',

F F F
G,,0,,04

n=q/p’

q

p
56(/




Cam Clay
N

Equation (1) may be rewritten as :

Yield : ; >
f=¢-M[p(p,-p)]=0 o

Having Associated Flow Rule , gEf :

g=f=a-M[p(p,-p)]=0 @

Plastic potenti

—




Cam Clay

S
Hardening :

r:=N—-J.1np; (6)

0eb = [(A- x)/u]

~ h-u—-—— — o — = ==

L
[
5
o

‘ i ;p: )



Cam Clay
N

Now the model’s description is complete and the final matrix
from the plastic deformation as obtained previously can

be formed :

[&:]- (1-x) [(M’-n’) oy ][6;»']
= . (10}
o) op(M*+nY)L 2 4n'/(MP-n?)]L0g

And the elastic part :

P S o
5es 0 1/3G' || g




Cam Clay




Cam Clay

stress — state : {A(p;; v Poa using Eq(1)

stress increment : (Sp-',ﬁq:]

> Blp'+0p", q+8q) - pos using Eq.(1




Cam Clay




Cam Clay

From Eq. of Ellipse :

Replace for




Cam Clay
=

0 Prediction :

a)  Conventional CD-Test

r I

q=0,— 05

.

1 r
(6;+ 0, +03)= 3 (0] +203)

P’ 3
U=0

since  dg5 =480;=0 ‘ 6q - gé'p!



Cam Clay
=

Increment of loading BC

volume change :

§vge = 6V, + OV,

- OvR
‘ 6823(: = _BC' p' Beg pop : £

Ug

Knowing A & k so:
Fo) sgan be calculated.




Cam Clay

6&f

P

-The ratio sz¢ can be found from the normal direction to the

yield locus I:> e,

-further increments of load may be applied till point “F”
where the ratio of “plastic vol.” & “shear def.”
approaches infinity.

: p
At this point : Ion=M %% —0
P : op’
= Por oeg _
P 2 5q_cp

Since §g§ -0 |:> No further change in the size of

yield locus”



Cam Clay
N

“plastic shear strain continues at constant effective stress at
point F

q q
el ;

.....
s B

P bel pop - &




Cam Clay

These behaviors may be followed using the equation
derived previously :

éE;=M2_nI
del 2n
Las -M = ﬁ—ﬂ]

Now considering the route by which point B was reached :

The soil has been normally consolidated to point A in the
figure shown. In this case plastic deformations occur as
soon as the drained compression begins, since the yield
locus has to expand



Cam Clay
N

1 Normally consolidated clay :

q q

P

....
''''''
e

-




Cam Clay

if the soil has been compressed to B (isotropically) and
unloaded to A ; such that it is lightly over consolidated :

-in this case , the current yield locus passes through poit B ,
and drained loading ftill intersection of the yield locus is
“purely elastic”.

-at point B , there is a sharp drop in stiffness , where plastic
deformations start.

-same behavior in volume change



Cam Clay
N

o1 Lightly over consolidated clay




Cam Clay

in the case “Heavily overconsolidated” ; if the soil is
compressed to “K” and then unloaded to “P” ; we have :

-response is elastic till point Q on the yield locus “YI Q.

-since Q is on the left of the top of yield locus :

mm)  de, <0

From §g§ — (4- k) dpq :> 5}?:} < ()

)
v Po

“this means contraction of the yield locus”



Cam Clay
=

-1 Heavily overconsolidated




Cam Clay

The ESP retreats back as shown in last figure toward point P
(R, S, ...) till the direction of plastic strain vector

becomes vertical :

The plastic shear strain continues without change in the yield
locus.

v

in this case ; plastic softening occurs instead of “work-
hardening”



Cam Clay

11 Experimental Results :

Conventional drained triaxial compression test on normally
w!npmsn_:d Weald clay [, = 207kPa (301bffin?)]: (a) deviator stress g and
axial strain &,; (b) volumetric strain £, and axial strain ¢, fafter Bishop and

Henkel, 1957).

(b)

Conventional drained triaxial compression test on heavily
overconsolidated Weald clay [o; =34kPa (51bf/in.2)}: {a) deviator stress ¢
and axial strain ¢,; (b) volumetric strain &, and axial strain &, {after Bishop and

Henkel, 1957).

100
£ 50
- b=
|/ M N
'UK 1 1 1 L
0 10 20
€, %
(a)




Cam Clay
N

0 Prediction :

b) Undrained Triaxial Behavior

I

b, = §£§ +8e2 =0
op,

o
‘ k ; +(A—-k) > =0 (1) Link between 6p' & dpj
0

I

from eq.(1) and shape of yield locus given by :

5" 26n  Op
', Zndn  Opy _

0 (2
p’ M*+n* pg @



Cam Clay
N

Note :
r 2
yield Surface : p, = M
Po M?+n?
-— —P'8po +pedp’ _ —M* 23dy P 20 o )
Po (M2 +nA)? pp M 47?

op;
- o' = p' 2 = —p'20dn/ (M + )
1]




Cam Clay
N

op' A-k 2
D&(2): ——= d 3
W& o= rd ()
Integration : J- ()op . j dn
P; (ME+T}E A (4) where ﬁzjl;—k
- \y2 2
P M=+ i pi.n; + Initial effective stress — state




Cam Clay
N

1 Equation (4) defines the shape of the undrained effective
stress path. (provided yielding is occurring)




Cam Clay
=

01 If the ESP is within the current yield surface :

:> Elastic behavior
:> op'=0  (for de,=0)

q
c, "M
i :

L
o al \

AB : Elastic ; BC : Elastic + plastic




Cam Clay
N

from eq.(1) sign of 0p' ,d0py should be opposite:

sif niM,ﬁ&E?U = Opy >0

then op' <0
sif o> M, 8g <0 - dpp <0

then op' =0



Cam Clay

Note :

ESP in the compression triaxial requires NO knowledge of
TSP.

The same ESP is followed for any triaxial compression total
stress path.

The only difference is different PWP that develops.

du = op — op’

Su=6p+ad _ %
u=0p+adg , a= 5q

(1)

~ a = slope of ESP



Cam Clay
N

Triaxial Test : TSP : {&q = 36p
If Elastic behavior op' =0 , —-a=0
oq
ou = o0p = 3

If plastic behavior

6q =ndép’ +p'dn  (2)

_ op' A—-k 27
previously : T2 M2+n25n (3)




Cam Clay
N

B 2(0—k)n
D.2.0) == =20 "

proof :
op' A—k 2y
_ = on
p' A M?+n?
. A-k 2 ,




Cam Clay
N

—&p'
A—k 2y
A M?24+n?

d0q =nop’ +p'on =nop’ +

o A(M? +n?)
‘*‘[”_ 2n(A— k)

r

op

a = —

J A 2n*(A—k) — A(M?* +n?)
5q 2n(A—k)

) 202 — k)
) C AT D 2= )



Cam Clay
=

q
since ov=0 — points B,C,..,F in Fig.b e -
e’
8
—  points B,C,..,F in Fig.a /
A
L4
© )
— ESP
ot -
".‘ﬂ _EPI
/e r
e
Fig.c — ou e ¢ 5

du is divided to two parts showing
contribution of total stress dp , and
from volume change §p’ .

Iy



Cam Clay

Lightly overconsolidated :

Elastic plane AB

Fig b : there is no change in
position till plastic vol

change occur.

“AB” associated only with

Elastic shear Strain :

op' =0 , ou=dp

F
r"-E) E
/c
7]
I
¥
£
() )
e
P F
« E
P -
E‘{rg ------------------------------ -
v*'p E F
4 ép

(b)



Cam Clay

0 Heavily overconsolidated :

Elastic :

n=M -

—

Max PWP

PQ , op' =0

shrinking of yield locus

op' =0

at yield , will be

reduced substentially.

a0

- ou=<0

{b)

g
S T
i
!
i
1
(@ ‘e
a
j"l::':.‘..é"“ f an ........---I—
P e sl |8 g
§ S &



Cam Clay
=

-1 These figures confirms predicted behavior , (Tests on real

[ ]
[ )
soils) :
Fig. 5.1% Conventional undrained triaxial compression test on normally Fig. 5,19 Conventional undrained triaxial compression test on heavily
compressed Weald clay [o; = 207 kPa (30 b{fin.%)]: (a) deviator stress q and overconsolidated Weald clay [o) = 34 kPa (51bffin.%)]: (a) deviator stress g
triaxial shear strain &, (b} pors pressure change Au and triaxial shear strain £, and triaxial shear strain g (b) pore pressure change Au and triaxial shear
(afer Bishop and Henkel. 1957). strain ¢, (after Bishop and Henkel, 1957).

_ 1001
H 5
100 G R
F ) S soF
E -
& 50 Q
0 P 1 L L L 1
E 0 10 20 3o
L 1 1 I -
% T 20 € %
£ % (a}
(a)

An, kPa

(b)

(k)



Cam Clay
N

1 Conclusion :

The simple model is capable of predicting any stress path
behavior.

Parameters :




Cam Clay

S s
0 HWs :

#5.1 , #5.4



- Chapter #6

Critical State



Critical state
B

0 Critical state is defined as the condition of perfect
plasticity :

4 )
dp’  dq _81?_0
asq_asq_asq_

\ J

-1 The corresponding effective stress ratio :

EIES

— r
pES

= M

T}ES




Critical state

As seen before , the ultimate point of effective stress path
for both drained and undrained condition , is 7=M on
top of the yield loci the critical state line may be reached
from both sides , ie

n<M, n>M = =M



Critical state

0 Note :

Critical state is reached on
deformations are occurring.

n==mM

n=M

, provided plastic

may be reached elastically !

Fig. 6.2 Points X and ¥ inside current yield locus and not at critical state.

/:::sl




Critical state
B

1 The cam-clay yield loci :
pr B ME
po M?Z+n?

Its size is controlled by py , shape (top of yield locus)

by “M”.
B g = @
T p pES 2
op n '
n=M,or q.,=Mp.




Critical state

NCL : v=N—Alnp'

URL : v =1 — k ilnp’

URL at the particular pg

v=N— Alnp) + kin2>
P




Critical state
e

r

r r pﬂ F r
at P = Pes = ? — Po = 2Pcs

Vee =N —Aln2p.. + kiIn2

or v =N—-(A—-k)In2—-AIlnp

but v..=T— A Inp.

-



Critical state
e

This is a line in compression plane

I''is v at p..=1

(values of N and T' depend on unit of stress kPa)

Complete definition of critical state line :



Critical state

I I ——
0 3D plot :

it is a single
curve in

this space .




Critical state

2D Representation :

for any stress ratio ; in the compression plane we have :

v=v; —A Inp

) wy=v+ilp' (D)

Since the lines in compression plane of constant stress ratio
are all parallel , it is defined by V3 , therefore, a pair
of (n,v;) canbe used to display information about

piq:iv



Critical state
B

+ |Isotropic Compression : n=0 , v;=N

<« At critical-state : n=M , v =T

values of v, for any other n:

r

v=N—Alnp]+ klnz—? (2)
From (1) : v; = (N —Alnpy +k In?) + A lnp’
_ Po

p



Critical state
—

r

Replace p_? from the yield locus equation :
p

p_ M
P, M?+n?

) o =N-(G-k)




Critical state
B

0 This relationship is shown below :

1- n=0 - vy =N

2-the “NC” path :
any normally consolidated drained

and undrained test.

3-"C” critical state :

n=M — vy =T




Critical state

4-Undrained test on lightly over

Consolidated starts at “p” and :

PQ,Q —>C, ifdrained: P_- F

F— C
5-heavily overconsolidated :

R—S,S—C, ifdrained: R—> G

G— C




Critical state

71 An alternative way :

-Equivalent preconsolidation pressure : p,

|

: the pressure at which

url
in isotropic consolidation

would give the current

specific volume.

T e =

o
T
"

<

=
b



Critical state
B

Isotropic Compression line :

v=N-—4 Inp,
Pe = EKP(_F ; N) (1)

With P’ inside the current yield locus of size Do

H:N—j{lnp5+kln? (2)



Critical state




Critical state
B

-By comparing with the yield locus :
P M
Py M?+7?

-Substitute in previous equation :

P ( Mz )A (1) Equation of undrained path
—_— = udarion or undrdine a
) = Gre ] P

-Also

¢g=np =) (f)=n(§—) @



Critical state

(1) & (2) will give :
overconsolidated undrained :
RS —— SC
PQ— QC

overconsolidated drained :
PF—— FC
RG—>GC

NC : Normally consolidated ,

both drained and undrained

q/P,

—_—— = —— = — = —

p'lp,

-I-u
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Strength of Soils



Strength of Soils
=

. Triaxial Compression

. Triaxial Extension

i Truly Triaxial




Strength of Soils

T e
= Mohr-Coulomb :

T=c +0 tan g’

7 In terms of principal stresses :

o, +c' cotg' 1+ sing’

o, +c cot@' 1-sing’




Strength of Soils
N

In terms of p' &q for triaxial compression :

2) q 6 sing’

p'+c cﬂtq)’zﬂ—sinq)’




Strength of Soils
N

1 For triaxial extension :

p’ + c'cote’ T3 sing’

1 Mohr-Coulomb failure

criteria in g-p’ space :

/N

extension P
6 sin ¢'
3 +sin ¢’



Strength of Soils

oy +c cote’ 1+ sing’
2(05 + ¢’ cotep) 2(1— sing’)

Combine in denominator:

gy +c cotg 1+ sing’
o, + ¢ cotg + 205 + 2¢' cotgp 2 —2sing’ + 1 + sing’

3[o; + ' cotep’]  3[1+ sing]
o), +20, +3ccotp’ 3 —sing




Strength of Soils

30, +3c'cote’ — a; — 205 — 3c'cot’

"+ 20

3(‘71 3 3+ c'cotg’)

~ 3(1 +sing’) — 3 + sing’
N 3 — sing’

q _ bsing’
p' +c'cote’ 3 — sing’




Strength of Soils
=

1 In critical state

q y : '
ﬂ _ ; = M /A/ﬁﬁn'r
3 — sin @'
. compression
Comparing with this figure: < _
M\ﬁﬁn*
3 +sin ¢’

l soils are failing at a “purely frictional”
manner at critical state. (¢’=0)

P




Strength of Soils
=

1 The deformation is so large that any bonding leading to
cohession is destroyed. With ¢’=0:

6sing’

= — Triaxial compression
3 —sing

6sin
L4 Triaxial Extension

31 sing’

o Important :

Experimental evidence ‘ 4;0’ is the same in triaxial

compression & extension. ,

r
' e
M= — M 35



Strength of Soils

S =
Undrained Shear Strength :




Strength of Soils
=

o1 A soil with a specific volume “v”, will end on the CSL at a

mean pressure , p; :

? csl

TSP
F - Au [|3
ESP




Strength of Soils
N

0 Effect of Consolidation History :

NCL: v=v;—Alnp’ €
CSL: v=T—-2lnp’ 2

v
URL : v=v,—kinp’ (3)

Separation of NCL & CSL (volume) = v; —T

This separation may be also expressed

in terms of p, , pLs ¢

(for cam-clay model py,=2p., —- 1r=2)



Strength of Soils
=

0 If a soil is NC to “O” then unloaded to “I” (not
isotropically necessary)

Then, OCR, n, is defined as:

And u-=uA—ian;]+k!n(np) (5)

L

Also  v; =T — ilnp; (6)



Strength of Soils

S
From (5) & (6) :
r—ilnp;=v,—Alnp,+kin(n,)

r—v .k
Inp, = Ai+lnpﬂ—jln(np)

va

Or p;=exp [l:

+Inp, — %In (np)]

1.
But qy=Mp; & C = Mpj




Strength of Soils
N

Using (4) & (4b) with (7) :

Note :

The equation links the total undrained shear strength of
soils with effective stress parameters M,k ,4, ... and
the consolidation history of the soil.



Strength of Soils

I 2 4 8 16 32

Ry



Strength of Soils

In_terms of normal consolidation instead of isotropic

consolidation -

ir
Define : n=-2

()
i) _ (7 A
Then : (CTH—) = (E) (n,) (10)
Cu
From fig. (7.8b) (o)
% =nV N=0.8
(ﬂ-fu_ nc

Fig. 7.8  Ratio of undrained strength to mitial vertical effective stress (c o))
varying with overconsolidation ratio m: (1) Drammen clay ([, =0.30) (after
Andresen, Berrs, Kleven, and Lunne, 1979} (2) Maine organic clay ([ = 0.34)
(3) Bangkok clay (/; =041} {4) Atchafalava clay (I, =0.75); (5] AGS CH

clay (I, = 0.41}% (6) Boston Blue clay (I, = 0.21); (7) Connecticut Valley varved
clay ([, = 0.39/0.12) (after Ladd, 1981}

*
wl

c,lo
ey 105 hne

10

-2




Strength of Soils
=

0 Critical state line V pore water pressure at failure :

Previously :

du =6p +adq (1)

a: current slope of the undrained effective stress path

I a” is not a soil constant but depends on the

current stress-state and history of consolidation.

an_average value : ap= _fj (2)

Remember :

[
2S-
3
'h.h
[
=<
~.
L
I1
X
=
L
2
p—




Strength of Soils

-In triaxial compression test :

1 1
Aq=q; ; ﬁp:gﬁq=§qf (4)

the effective mean stress at the end of test :

Py =2k - E(ﬁ)ﬂ (5)

q

Au = Ap + a5 » Aq




Strength of Soils

= Ap — (py —pD)
=Ap—pr+p;

’ qr 1
=P~y t3% < from(d)

Substitute from (5) :

—> du=p;

() Gy)]  ©



Strength of Soils

Dependence of pore pressure parameter a, at failure on

overconsolidation ratio for isotropically overconsolidated Weald clay (after
Bishop and Henkel, 1957).




Strength of Soils
N

11 For normally consolidated clays :

M=0.95-1.0

n, = r=2

kmlt 1 (tk 1)

25 %710 axe 5

A=tk Ko
Y e

—ﬂ.ﬂ
From (8) — :y_095[ —4:03

- ar=0.6 to 0.7 for most NC clays



Strength of Soils

A 2 1 F _-Qug =gy
‘ “:(§+§)qf /|3

qr

!
il
3

‘ as=0 ; (since the elastic behavior Ap' = 0)




Strength of Soils

S
0 Peak Strength :

the locus of peak points consists of two sections :
1-Lightly “OC”  “NC” samples
(OCR < 2)

CSL between A C is

the peak deviatoric stress.

2-Heavily “OC” samples between B C 4

(drained triaxial test)

“point B for a sample at zero cell pressure”



Strength of Soils
—

0 Note :

It is inappropriate to get asingle Mohr-coulomb strength
equation to this set of data.

with similar test with different past max consolidation pressure
, we get :

Peak is the zero TOC for heavily OC c

soils under drained triaxial compression.

E) [No single Mohr-Coulomb line] i



Strength of Soils

To make this curve into a single representation , by
normalization of the axes :

It is necessary to deduce the max past

consolidation pressure , but having the

saturated water content

—> v (specific volume) —

And the equivalent consolidation pressure Pe

May be deduced.(p. )




Strength of Soils
—

11 As explained previously the normalization with gives
a unique curve “BC”:

The CSL become a point “C”

o

Normalized
_ \ undrained

RS
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Hyperbolic Model



Hyperbolic Model
=

a ) Loading:

&

1 < _(S‘ |
E; " (01— 03)us Sl

(6, —03) =

PR

‘\\1‘53 wr ’M@“ﬁisj
g, — 0 .~
NG ‘.
(01— 03) e :

0.6 < Ry =0.9

'a"'.[—
)

{

2ccos @ + 204 sin @

(01~ 05)s = 1—-sing




Hyperbolic Model

E, is a function of :
—stress level

—confining pressure (03)

E, =[1- R/(SD)]".E;

SL =

ﬂ-l_

(o4 —

Ua)f




Hyperbolic Model
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b ) Unloading — Reloading :
E — (ﬁ)n
ur — By Pa P,

K, =~ (1.2-3)K

ur

SL= (0, —03)/(01 —03)f <

axpast ‘ Unloading — Reloading

If SL < SL,
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4 0-3 ‘:;.;L'U& LAN:'
Stress — state SS=5L |—
Pa *
V / ) -:‘\' 1 ‘-\T\.\vv‘
’2 F ’ Ty \\\‘-“j:/“. ST:{ﬂ

/// L‘ v '((

- Unloading Reloading if SS < SS,.,x past / / "
A A L

jQLQ‘:&AM\ _

V3

‘ (SL) .riticar @bove which primary loading is assumed

SS

max. past

4|03
Da

(SL)critical =



Hyperbolic Model

S =
0 Bulk Modulus :

B = K, p, (2™
bpa pa

Hence : V=

v < 0.5 v=0.5 - Numerical Instability

= [ n
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()
o
[P}
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Nonlinear Failure envelope:

S
@ =@y LAp Iﬂg(p—)

FC A

M/ : G



Hyperbolic Model
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0 Evaluation of Hyperbolic Parameters :

a ) Evaluation of K& n:
5~k ()
i = Pa |\
Pa
Determine E; for each test, plot E; versus o3 on log scales.

For determining E;

<
hyperbolic model : 01— 05 = 1 €
E; (07— 03)u
€ 1 3

—

_I_
6,—03 E; (0,—03),,




Hyperbolic Model
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£
versus &€ isline

&
0' '03 ’
( -~
‘ \Ot 6:.)*'*.

]

7

<
K Fow\s‘fch wsed ee f? H&mh{k’m

g, — 03




Hyperbolic Model
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1 The data plotted on the transformed section only for 70% and
95% of strength (Duncan & Chang believe this gives the best
fit for the hyperbola).

‘ Only two points appear on the transformed section .
E;, (61— 03)w: - 03,
E;, (61— 03)w: - O3,

E;, (61— 03)u: - 03,



Hyperbolic Model

E; 03
Next a plot of p_ versus p_ :

;&s\l\_\“\

=7 f‘"f\/}/
("08 5;:.«.&") m‘(‘

1 4o oo § S/ — Seate)
’4‘3(&)«- 7/\4/'4’0('3) :



Hyperbolic Model

N
b) Evaluation of R, :

Forthe 3  (6,-05)u obtained , the values of (4,
are determined correspondingly , then:

o UE)failure

N : No. of test

c) C & Q -
Usual procedure by fitting Mohr-Coulomb line .



Hyperbolic Model

EEEE
d) Ag
usually for cohesionless soils , the curvature is higher ,

and single ¢ for different o3 in the dam body is
difficult (like rockfill material ).

‘ @ is determined for each Mohr circle with zero
cohesion :

o, — 0
) | eosnt )
o, + 05
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By drawing @ versus log of 23 and fitting a line :

Pa

O3
@ =@y —Ap !ﬂgm(p—)




Hyperbolic Model
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e ) Evaluation of K, :

n : determined previously

‘ On unknown, K, , may be determined from
a single unloading curve , and best value of

ustu. I.ZEK—” = 3
K



Hyperbolic Model
N

f ) Evaluation of g, & m;

Two steps :
—Determined B for each test.

—Plot B versus o5 on log —log scales.

for soils where volume change curves do not reach
horizontal tangent prior to the stage at which 70% of
strength is mobilized , B is calculated at 70% strength
level . Otherwise , where the tangent is horizental .
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B A(mean pressure)

&

e

Al +0,+03) 1




Hyperbolic Model

|
A =
{f"‘\ _,:: _‘74’__ - _f/
g m '
A 4 a -
Kb
4 ' 2

0 = v = 0.5 or 0 =v = 0.49



